
PUY, KITIĆ, PÉREZ: LOCAL & NON-LOCAL SIGNAL PROCESS. WITH GRAPH CNNS 1

Unifying local and non-local signal
processing with graph CNNs

Gilles Puy
gilles.puy@technicolor.com

Srd̄an Kitić
srdan.kitic@technicolor.com

Patrick Pérez
patrick.perez@technicolor.com

Technicolor
975 Avenue des Champs Blancs
35576 Cesson-Sévigné, France

Abstract

This paper deals with the unification of local and non-local signal processing on
graphs within a single convolutional neural network (CNN) framework. Building upon
recent works on graph CNNs, we propose to use convolutional layers that take as inputs
two variables, a signal and a graph, allowing the network to adapt to changes in the
graph structure. In this article, we explain how this framework allows us to design a
novel method to perform style transfer.

1 Introduction
Convolutional neural networks (CNNs) have achieved unprecedented performance in a wide
variety of applications, in particular for image analysis, enhancement and editing – e.g.,
classification [14], super-resolution [8], and colorisation [24]. Yet standard CNNs can only
handle signals that live on a regular grid, and each layer of a CNN only performs a local pro-
cessing. Locality has already been identified as a limitation for classical signal processing
tasks where powerful non-local methods have been proposed, such as patch-based methods
for inpainting [6] or denoising [4, 22]. Regular CNNs do not allow such a non-local process-
ing. Furthermore, the growing amount of signals collected on irregular grids, such as social,
transportation or biological networks, requires extending signal processing from regular to
irregular graphs [20].

Any CNN consists of a composition of convolutional and pooling layers. One should
thus redefine both convolution and pooling to handle “graph signals”. In this work, we use
convolutional layers only and hence just concentrate on the generalisation of the convolution.
One major challenge in this generalisation is to take into account the possible changes of the
graph structure from one signal instance to another: nodes and edges can appear, disappear,
and the edge weights can vary. For instance, the connections between the users (graph’s
vertices) in a social network change over time. It would be cumbersome to retrain a CNN
each time a connection changes. In non-local signal processing methods, the situation is
even more extreme as the graph is a construct whose edges typically capture similarities
between different parts of the signal itself. In this case, the CNN must not be just robust to

c© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Dong, Loy, He, and Tang} 2016

Citation
Citation
{Zhang, Isola, and Efros} 2016

Citation
Citation
{Criminisi, Pérez, and Toyama} 2004

Citation
Citation
{Buades, Coll, and Morel} 2005

Citation
Citation
{Talmon, Cohen, and Gannot} 2011

Citation
Citation
{Shuman, Narang, Frossard, Ortega, and Vandergheynst} 2013



2 PUY, KITIĆ, PÉREZ: LOCAL & NON-LOCAL SIGNAL PROCESS. WITH GRAPH CNNS

few variations in the graph structure but fully adapt to these variations. We propose here a
solution to this challenge but passing two variables to the CNN: the signal itself, as usual,
and the graph structure.

Contributions – We propose a graph CNN framework that takes as inputs two variables:
a signal and a graph structure. This permits the adaptation of the CNN to changes in the
structure of the graph on which the signal lives, even in the extreme case where this structure
changes with the input signal itself. We also propose a unique way of defining convolutions
on arbitrary graphs, in particular non-local convolutions, with application to a wide range of
many different signal processing applications. Due to space constraint, we only present the
use of graph CNNs for image style transfer in this article. We use a local CNN to capture
and transfer local style properties of the painting to the photograph. We also use a non-
local graph CNN to capture and transfer global style properties of the painting, as well as to
preserve the content of the photograph. In addition, we show that this task can be done using
only two random shallow networks, instead of a trained regular deep CNN [9].

Let us mention that additional experiments in the supplementary material [18] demon-
strate the effectiveness and versatility of our framework on other kinds of signals (greyscale
images, color palettes, and speech signals) and tasks (color transfer and denoising). In par-
ticular, the experiments show that it is possible to identify the optimal mixing of local and
non-local signal processing techniques by learning.

2 Graph CNN

2.1 State-of-the-art methods
In this section, we review different existing solutions to generalise CNNs to signal living on
graphs. The reader can refer to [2] for a detailed overview. We restrict our attention here to
the solutions the most closely connected to ours.

A first approach to redefine convolution for graph signals is to work in the spectral do-
main, for which we need to define the graph Fourier transform. To introduce this transform,
we consider an undirected weighted graph1 G with graph Laplacian denoted by L ∈ Rn×n.
For example, L can be the combinatorial graph Laplacian L = D−W, or the normalised one
L = I−D−1/2WD−1/2, where I is the identity matrix and D ∈ Rn×n is the diagonal degree
matrix with entries di = ∑

n
j=1 Wi j [5]. The matrix L is real symmetric and positive semi-

definite. Thus, there exists a set of orthonormal eigenvectors U ∈ Rn×n and real eigenvalues
0 = λ1 6 . . .6 λn such that L = UΛUᵀ, where Λ = diag(λ1, . . . ,λn) ∈Rn×n. The matrix U is
viewed as the graph Fourier basis [20].

For any signal xxx∈Rn defined on the vertices of G, x̂xx=Uᵀxxx is its graph Fourier transform.
One way to define convolution on G with a filter hhh ∈ Rn is by filtering in the graph Fourier
domain:

xxx?hhh = U (ĥhh� x̂xx) = UHUᵀxxx, (1)

where � denotes the entry-wise multiplication and H = diag(ĥhh) ∈ Rn×n. In the context of
graph CNN, it is the approach chosen in [3]. This approach however has several drawbacks:

1A graph G is a set of n vertices, a set of edges E and a weighted adjacency matrix W = [Wi j] ∈ Rn×n
+ , with

Wi j > 0 iff (i, j) ∈ E . In this paper, we consider directed graphs unless explicitly stated. The matrix W is thus not
symmetric in general.

Citation
Citation
{Gatys, Ecker, and Bethge} 2016

Citation
Citation
{Puy, Kitic, and Pérez} 2017

Citation
Citation
{Bronstein, Bruna, LeCun, Szlam, and Vandergheynst} 2016

Citation
Citation
{Chung} 1997

Citation
Citation
{Shuman, Narang, Frossard, Ortega, and Vandergheynst} 2013

Citation
Citation
{Bruna, Zaremba, Szlam, and LeCun} 2014



PUY, KITIĆ, PÉREZ: LOCAL & NON-LOCAL SIGNAL PROCESS. WITH GRAPH CNNS 3

Computing U is often intractable for real-size graphs; Matrix-vector multiplication with U
is usually slow (there is no fast graph Fourier transform); This definition does not allow
variations in the graph structure as the matrix U is impacted by any such change; The number
of filter coefficients to learn is as large as the size of the input signal. The subsequent work
[12] solves this last issue by imposing that the filter lives in the span of a kernel matrix Kn×ñ

with ñ 6 n.
To overcome the computational issues of the spectral approach, a known trick in the field

of graph signal processing is to define a filter as a polynomial of the graph eigenvalues [10].
Let ĥ : R→ R be a polynomial of degree m > 0: ĥ(t) = ∑

m
i=0 αit i, with α0, . . . ,αm ∈ R and

consider the filter ĥhh = (ĥ(λ1), . . . , ĥ(λn))
ᵀ. One can easily prove that spectral filtering with

ĥhh satisfies

xxx?hhh = U (ĥhh� x̂xx) =
m

∑
i=0

αiL
ixxx. (2)

This expression involves only computations in the vertex domain through matrix-vector mul-
tiplications with L. As the Laplacian is usually a sparse matrix, filtering a signal with a
polynomial filter is fast. This is the approach adopted by [7] and [13] in their construction of
graph CNNs. Beyond the computational improvements, the number of coefficients to learn is
also reduced: m instead of n. Furthermore, the localisation of the filter in the vertex domain
is exactly controlled by the degree of the polynomial [7, 10]. Yet these polynomial filters
are not entirely satisfying. Indeed, for, e.g., a graph modelling a regular lattice, polynomial
filters are isotropic unlike those in regular CNNs for images – where the underlying graph is
a regular lattice. There is no equivalence between regular CNNs and graph CNNs with poly-
nomial filters. Let us also mention the work of [1] where the convolution is defined using a
diffusion process on the graph. Due to lack of space, we do not report the exact definition
but this one shares similarities with (2) where the normalised transition matrix P = D−1W is
substituted for the Laplacian.

In our work, we built upon the work of [17] and [16] to get rid of these shortcomings. The
convolutions are directly defined in the vertex domain in a way which allows ones to directly
control the computational complexity and the localisation of the filters. Furthermore, these
filters do not suffer from the isotropy issue of polynomial filters.

2.2 Our method
Each layer of our graph CNN implements a function

f : (X,G) 7−→ f (X,G) (3)

where X ∈ Rn×m0 is the input signal, f (X,G) ∈ Rn×m1 , and G is a n-vertex graph on which
the columns of X live and which defines how the convolution is done in this layer. The
input signal X has size n in the “spatial” dimension – e.g., n pixels for images – and has m0
channels or feature maps – e.g., m0 = 3 for color images. The output signal has same spatial
size n – we do not use any pooling layers in this work – and m1 feature maps.

2.2.1 Convolution

The convolution we use follows principles also used in, e.g., [15, 16, 17, 19], where the
computation done at one vertex is a function of (at least) the values of the signal at this

Citation
Citation
{Henaff, Bruna, and LeCun} 2015

Citation
Citation
{Hammond, Vandergheynst, and Gribonval} 2011

Citation
Citation
{Defferrard, Bresson, and Vandergheynst} 2016

Citation
Citation
{Kipf and Welling} 2016

Citation
Citation
{Defferrard, Bresson, and Vandergheynst} 2016

Citation
Citation
{Hammond, Vandergheynst, and Gribonval} 2011

Citation
Citation
{Atwood and Towsley} 2016

Citation
Citation
{Niepert, Ahmed, and Kutzkov} 2016

Citation
Citation
{Monti, Boscaini, Masci, Rodolà, Svoboda, and Bronstein} 2016

Citation
Citation
{Li, Tarlow, Brockschmidt, and Zemel} 2016

Citation
Citation
{Monti, Boscaini, Masci, Rodolà, Svoboda, and Bronstein} 2016

Citation
Citation
{Niepert, Ahmed, and Kutzkov} 2016

Citation
Citation
{Scarselli, Gori, Tsoi, Hagenbuchner, and Monfardini} 2009



4 PUY, KITIĆ, PÉREZ: LOCAL & NON-LOCAL SIGNAL PROCESS. WITH GRAPH CNNS

vertex and neighbouring vertices as well as of labels attributed to each edge. We choose here
to use the formalism of [16] for our description.

Convolutions in [16] are done in two steps: the extraction of a signal patch around each
vertex and a scalar product. We assume here that all vertices have the same number of
connections: |{ j : (i, j) ∈ E}|= d for all i∈ {1, . . . ,n}. If this is not the case, one can always
complete the set of edges and associate to these edges, e.g., a null weight. We also assume
that (i, i) ∈ E for all i ∈ {1, . . . ,n}.

For a given graph G satisfying the above assumption and with adjacency matrix W ∈
Rn×n, we model patch extraction at vertex i with a function

p : {1, . . . ,n}×Rn −→ Rd

(i,xxx) 7−→ (p1 (i,xxx) , . . . , pd (i,xxx))
ᵀ (4)

where each p` (i,xxx) ∈ R, ` = 1, . . . ,d, extracts one entry of the vector xxx, which represents
one column of the input signal X. Let j1, . . . , jd be the d indices to which i is connected.
The order in which these d entries are extracted by p is determined by “pseudo-coordinates”
u(i, jk) ∈ {1, . . . ,d} attributed to each connected vertex jk [16]. The nature of these pseudo-
coordinates will be given in Section 2.2.2 for local convolution and in Section 2.2.3 for
non-local convolution. We define

p` (i,xxx) = g(wwwi, jk) xxx jk (5)

where u(i, jk) = `. The vector wwwi ∈Rn is the ith row of W, which contains at most d non-zero
entries, and g : Rn×R→ R is a re-weighting function that gives the possibility to account
for each edge weight in the convolution. We noticed that the choice of this function is very
important in the definition of the non-local convolutions to achieve good results in our signal
processing applications (see its definition in Section 2.2.3). Note that g depends on wwwi and
jk in our work while this function depends solely on the pseudo-coordinates in [16]. This is
a simple but important modification for our applications.

Convoluting xxx with a filter hhh ∈ Rd is then defined as in [16]:

(xxx?hhh)(i) = hhhᵀp(i,xxx), (6)

for all i ∈ {1, . . . ,n}. Finally, the function f in (3) satisfies

f (X,G) =
(

s
( m0

∑
j=1

xxx j ?hhh`j,b
`
))

`=1,...,m1

(7)

where s : R×R → R is an element-wise non-linearity, e.g., ReLU defined as s(xxx,b) =
ReLUb (xxx) = max{0,xxx + b}, xxx j ∈ Rn denotes the jth column-vector of X, hhh`j ∈ Rd , j =
1, . . . ,m0, `= 1, . . . ,m1, are filters, and b1, . . . ,bm1 are biases.

Let us highlight that the size n of the input signal X in the spatial dimension is not fixed
in (7). Hence, f can be computed for signals of different sizes using the same filters hhh`j,
exactly as with regular CNNs.

We explain in the next section how one can recover the usual local convolution for images
from this definition. We will then continue with the description of the proposed non-local
filtering in the Section 2.2.3.

Citation
Citation
{Monti, Boscaini, Masci, Rodolà, Svoboda, and Bronstein} 2016

Citation
Citation
{Monti, Boscaini, Masci, Rodolà, Svoboda, and Bronstein} 2016

Citation
Citation
{Monti, Boscaini, Masci, Rodolà, Svoboda, and Bronstein} 2016

Citation
Citation
{Monti, Boscaini, Masci, Rodolà, Svoboda, and Bronstein} 2016

Citation
Citation
{Monti, Boscaini, Masci, Rodolà, Svoboda, and Bronstein} 2016



PUY, KITIĆ, PÉREZ: LOCAL & NON-LOCAL SIGNAL PROCESS. WITH GRAPH CNNS 5

2.2.2 Local convolution

As noticed in [16], the above definition of convolution permits us to recover easily the stan-
dard convolution for images (or, similarly, signals on regular lattices) by constructing a local
graph from the Cartesian 2D-coordinates of each pixel in the image.2 We denote these coor-
dinates (α(i),β (i)), i = 1, . . . ,n. For a filter of size

√
d×
√

d, we connect each pixel i to all
its local neighbours j1, . . . , jd that satisfies |α( jk)−α(i)| 6 b

√
d/2c and |β ( jk)−β (i)| 6

b
√

d/2c, for k = 1, . . . ,d. We then build the local adjacency matrix W that satisfies Wi j = 1
if (i, j) ∈ E , and 0 otherwise. The pseudo-coordinates are determined using the relative posi-
tion of each pixel jk to pixel i. For any pixel of the image, the connected pixels have relative
coordinates in {(α(i)−α( jk),β (i)− β ( jk)),1 6 k 6 d}. We thus create a look up table
c : R×R→{1, . . . ,d} that associates a unique integer `∈ {1, . . . ,d} to each of these relative
coordinates. Then, we define u(i, jk) = c(α(i)−α( jk),β (i)−β ( jk)).

With this procedure the pixels are always extracted in the same order, e.g., lexicographi-
cally. Finally, (6) is equivalent to the usual convolution when using g(·) = 1 in (5).

2.2.3 Non-local convolution

We now describe our proposition to perform more general non-local convolutions, i.e., we
give the definition of the pseudo-coordinates and of the function g in (5). In our applications,
these convolutions are based on a graph G that captures some structure that we wish to pre-
serve in the signal X. The exact construction of G thus differs depending on the application.
Yet, we define the pseudo-coordinates and the function g always in the same way, whatever
the application. Our main contributions with respect to [16, 17] resides in these choices of
pseudo-coordinates and of function g which, empirically, seems universal enough to treat
several applications.

The weight Wi j of the edge between vertices i and j is determined based on a distance
between feature vectors fff i and fff j extracted at vertex i and j, respectively. Let ∆( fff i, fff j)> 0
denote this distance. Let again j1, . . . , jd be the vertices to which vertex i is connected and
ordered such that ∆( fff i, fff j1)6 . . .6 ∆( fff i, fff jd ). We propose to define the pseudo-coordinates
as u(i, jk) = k, k ∈ {1, . . . ,d}. In other words, the pseudo-coordinates re-order the distances
between feature vectors in increasing order. Note that we break any tie arbitrarily.

Finally, we propose to use the following function g in (5):

g(wwwi, j) =
wwwi j

∑
n
k=1 wwwik

d, (8)

where wwwi j = Wi j is the jth entry of wwwi.

3 Style transfer with graph CNNs
In this section, we substitute f (X) for f (X,G) in (7) to simplify notations. However, one
should not forget that the convolution at each layer is defined by an underlying graph G.
This graph will always be defined explicitly in the text.

Style transfer consists in transforming a target image Xt ∈ Rn×3, typically a photograph,
to give it the “style” of a source image Xs ∈ Rn′×3, typically a painting. Impressive results

2We consider a regular grid of equispaced pixels.

Citation
Citation
{Monti, Boscaini, Masci, Rodolà, Svoboda, and Bronstein} 2016

Citation
Citation
{Monti, Boscaini, Masci, Rodolà, Svoboda, and Bronstein} 2016

Citation
Citation
{Niepert, Ahmed, and Kutzkov} 2016



6 PUY, KITIĆ, PÉREZ: LOCAL & NON-LOCAL SIGNAL PROCESS. WITH GRAPH CNNS

have recently been obtained using CNNs [9]. The style transfer method of Gatys et al.
consists in solving a minimization problem of the form

X∗ ∈ argmin
X∈Rn×3

∑
`∈Ls

‖ f`(X)ᵀ f`(X)− f`(Xs)
ᵀ f`(Xs)‖2

F +λ ∑
`∈Lt

‖ f`(X)− f`(Xt)‖2
F , (9)

where f`(X) is a matrix with the feature maps at depth ` of a multi-layer CNN, Ls and Lt
are two subsets of depths, and ‖·‖F denotes Frobenius norm. Gatys et al. used the very deep
VGG-19 network, pre-trained for image classification [21]. The first term encourages the
solution X∗ to have the style of the painting Xs by matching the Gram matrices of the feature
maps, such statistics capturing texture patterns at different scales. The second term ensures
that the main structures (the “content”) of the original photograph Xt , as captured in feature
maps, are preserved in X∗. Note that all the spatial information is lost in the first term that
encodes the style, while it is still present in the second term. It was proved shortly after
that similar results can be obtained using a deep neural network with all the filter coefficients
chosen randomly [11]. Let us also mention that [23] showed that texture synthesis, i.e., when
only the first term in (9) is involved, can be done using multiple (8) one-layer CNNs with
random filters giving each m = 1024 feature maps.

We show now that our graph-based CNNs allow us to revisit neural style transfer. We
use only two one-layer graph CNNs with random filters giving each only 50 feature maps.
This is a much “lighter” network than the ones used in the literature. The first network,
denoted f1, uses local convolutions (Section 2.2.2) and the second, denoted f2, uses non-
local convolutions (Section 2.2.3) on a graph that captures the structure of the photograph
Xt to be preserved. Both f1 and f2 have the form (7) with m0 = 3 for the three Lab channels
of color images and m1 = 50. We also choose d = 25 and ReLU for the non-linearity in
both cases. The 25× 3× 50× 2 = 7500 coefficients of the filters hhh`j and the 50× 2 = 100
biases b` in (7) are chosen randomly using independent draws from the standard Gaussian
distribution.

The graph in the second CNN f2 is constructed as follows. For an image of interest X, we
construct a feature vector fff i ∈ R29 at each pixel i of the image by extracting all the pixels’
Lab values in the neighbourhood of size 3×3 around i as well as the absolute 2D coordinates
of the pixel. We then search the d = 25 nearest neighbours to fff i in the set { fff 1, . . . , fff n} using
the Euclidean distance. Let D = {

∥∥ fff i− fff j
∥∥

2}i j be the set of all distances between each fff i
and its nearest neighbours. We have |D| = 25n. To avoid that some pixels are too weakly
connected to others, which then produces artefacts in the final images, we compute the 80th

percentile of the values inD and saturates all the distances above this percentile to this value.
The weights of the adjacency matrix W then satisfy

Wi j = exp
(
−
∥∥ fff i− fff j

∥∥2
2 /σ

2
)
, ∀(i, j) ∈ E , (10)

with σ equal to the 75th percentile of D.
We capture the style of the painting Xs by computing the Gram matrices

G1 = f1(Xs)
ᵀ f1(Xs) and G2 = f2(Xs)

ᵀ f2(Xs), (11)

where the non-local convolution in f2 is computed using the graph constructed on Xs. The
matrix G1 captures local statistics while G2 captures non-local statistics. To give the style of
Xs to Xt , we now compute a new graph on Xt . We then compute an image X∗ ∈ Rn×3 by

Citation
Citation
{Gatys, Ecker, and Bethge} 2016

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{He, Wang, and Hopcroft} 2016

Citation
Citation
{Ustyuzhaninov, Brendel, Gatys, and Bethge} 2016



PUY, KITIĆ, PÉREZ: LOCAL & NON-LOCAL SIGNAL PROCESS. WITH GRAPH CNNS 7

Figure 1: Examples of style transfer results obtained where the photograph (left) is trans-
formed to have the style of a given painting (top). Using the proposed graph CNN frame-
work, only two one-layer random CNNs are required to extract matched statistics.

solving

min
X∈Rn×3

γ1 ‖ f1(X)
ᵀ f1(X)−G1‖2

F + γ2 ‖ f2(X)
ᵀ f2(X)−G2‖2

F + γ3 ‖X‖TV , (12)

where f2 uses, this time, the graph constructed on Xt for the non-local convolutions, ‖·‖TV
is the Total Variation norm, and γ1,γ2,γ3 > 0. Note that unlike in (9), we do not try to match
feature maps but only Gram matrices. Yet the final image X∗ retains the structure of Xt
thanks to the non-local convolution in f2.

In practice, we minimise (12) using the L-BFGS algorithm starting from a random ini-
tialisation of X. The parameters γ1,γ2 are computed so that the gradient coming from the
term they respectively influence has a maximum amplitude of 1 at the first iteration of the
algorithm. We set γ3 = 0.01n. All images used in the experiments have size n = 256×256.
However, we do not solve (12) directly at this resolution, but in a coarse-to-fine scheme
instead: We start by downsampling all images at n = 32×32 pixels; Solve (12) at this reso-
lution; Upscale the solution at 64×64 pixels; Restart the same process at this new resolution
using the up-scaled image as initialisation; Repeat this process until the final resolution is
reached.

We present some results obtained with our graph-based method in Fig. 1. One can notice



8 PUY, KITIĆ, PÉREZ: LOCAL & NON-LOCAL SIGNAL PROCESS. WITH GRAPH CNNS

Figure 2: Examples of style transfer results obtained with our graph CNN method using only
non-local convolutions where the photograph (left) is transformed to have the style of a given
painting (top).

that the main structure of the photograph Xt perfectly appears in X∗ thanks to the presence
of the structure-preserving non-local convolutions in f2. The style is also well transferred
thanks to the matching of the Gram matrices G1 and G2. For comparison with another
method, one can refer to [9] where results for some pairs of photograph-painting in Fig.1
are also presented. It is not possible to do a quantitative comparison between both methods.
Nevertheless, we notice that the method presented in [9] distorts more the edges present in
the original photograph than our method does. We also remark that some large scale style
characteristics are better transferred in [9] than with our method. We believe that using
deeper graph CNNs can help in improving the transfer of large scale style characteristics.

To highlight the role of the graph CNN with non-local convolutions, we repeat exactly the
same experiments but using only the non-local graph CNN, i.e., we do not use the regular
CNN with local convolutions – the TV regularisation is still present. Fig. 2 shows results
for one photograph and different paintings. First, we notice that the main structures of the
photograph are well preserved thanks to the graph CNN. Second, the colors of the painting
and the relative arrangement of the colors are well transferred. However, we are not able
to transfer finer style details like brush strokes. On the contrary, the local CNN is able to
capture these finer details which appear in the results with the complete method.

Let us highlight that this experiment already shows that our graph CNN framework can
adapt to many changes in the graph structure. Indeed, the graph used in f2 was built from
the painting when computing G2 while it is built from the photograph when computing X∗.

4 Conclusion

We proposed a graph CNN framework that allows us to unify local and non-local processing
of signals on graphs, and showed how to use this framework to perform style transfer. The
results already suggest that the proposed convolution adapts correctly to changes in the input
graph. Additional experiments in the supplementary material [18] demonstrate the versatility
of our framework on other kinds of signals and tasks. Beyond signal processing, we believe
that some of the tools presented here can be useful to other applications involving time-
varying graph structures, such as in social networks.

Citation
Citation
{Gatys, Ecker, and Bethge} 2016

Citation
Citation
{Gatys, Ecker, and Bethge} 2016

Citation
Citation
{Gatys, Ecker, and Bethge} 2016

Citation
Citation
{Puy, Kitic, and Pérez} 2017



PUY, KITIĆ, PÉREZ: LOCAL & NON-LOCAL SIGNAL PROCESS. WITH GRAPH CNNS 9

References
[1] J. Atwood and D. Towsley. Diffusion-convolutional neural networks. In NIPS, 2016.

[2] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep
learning: Going beyond Euclidean data. arXiv:1611.08097, 2016.

[3] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally con-
nected networks on graphs. In ICLR, 2014.

[4] A. Buades, B. Coll, and J-M Morel. A non-local algorithm for image denoising. In
CVPR, 2005.

[5] F.R.K. Chung. Spectral graph theory. Number 92. Amer Mathematical Society, 1997.

[6] A. Criminisi, P. Pérez, and K. Toyama. Region filling and object removal by exemplar-
based image inpainting. IEEE Trans. Image Process., 13(9):1200–1212, 2004.

[7] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NIPS, 2016.

[8] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-resolution using deep convolu-
tional networks. IEEE Trans. Pattern Anal. Mach. Intell., 3238(2):295–307, 2016.

[9] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional
neural networks. In CVPR, 2016.

[10] D. K. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on graphs via spectral
graph theory. Appl. Comput. Harmon. Anal., 30(2):129–150, 2011.

[11] K. He, Y. Wang, and J. Hopcroft. A powerful generative model using random weights
for the deep image representation. In NIPS, 2016.

[12] M. Henaff, J. Bruna, and Y. LeCun. Deep convolutional network on graph-structured
data. arXiv:1506.05163, 2015.

[13] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional
networks. arXiv:1609.02907, 2016.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep con-
volutional neural networks. In NIPS, 2012.

[15] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural net-
works. Int. Conf. on Learning Representations, 2016.

[16] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein.
Geometric deep learning on graphs and manifolds using mixture model CNNs.
arXiv:1611.08402, 2016.

[17] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural networks for
graphs. In ICML, 2016.

[18] G Puy, S. Kitic, and P. Pérez. Unifying local and non-local signal processing with graph
cnns. arXiv:1702.07759, 2017.



10 PUY, KITIĆ, PÉREZ: LOCAL & NON-LOCAL SIGNAL PROCESS. WITH GRAPH CNNS

[19] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph
neural network model. IEEE Trans. on Neural Networks, 20(1):61–80, 2009.

[20] D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging
field of signal processing on graphs: Extending high-dimensional data analysis to net-
works and other irregular domains. IEEE Signal Processing Magazine, 30(3):83–98,
2013.

[21] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv:1409.1556, 2014.

[22] R. Talmon, I. Cohen, and S. Gannot. Transient noise reduction using nonlocal diffusion
filters. IEEE Transactions on Audio, Speech, and Language Processing, 19(6):1584–
1599, 2011.

[23] I. Ustyuzhaninov, W. Brendel, L. A. Gatys, and M. Bethge. Texture synthesis using
shallow convolutional networks with random filters. arXiv:1606.00021, 2016.

[24] R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In ECCV, 2016.


