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Abstract

Convolutional Neural Network (CNN) models have become the state-of-the-art for
most computer vision tasks with natural images. However, these are not best suited for
multi-gigapixel resolution Whole Slide Images (WSIs) of histology slides due to large
size of these images. Current approaches construct smaller patches from WSIs which re-
sults in the loss of contextual information. We propose to capture the spatial context using
novel Representation-Aggregation Network (RAN) for segmentation purposes, wherein
the first network learns patch-level representation and the second network aggregates
context from a grid of neighbouring patches. We can use any CNN for representation
learning, and can utilize CNN or 2D-Long Short Term Memory (2D-LSTM) for context-
aggregation. Our method significantly outperformed conventional patch-based CNN ap-
proaches on segmentation of tumour in WSIs of breast cancer tissue sections.

1 Introduction
Recent technological developments in digital imaging solutions have led to wide-spread
adoption of whole slide imaging (WSI) in digital pathology which offers unique opportuni-
ties to quantify and improve cancer treatment procedures. Stained tissue slides are digitally
scanned to produce digital slides [6] at different resolutions till 40× as shown in Figure 1.
These digital slides result in an explosion of data which leads to new avenues of research for
computer vision, machine learning and deep learning communities. Moreover, these multi-
gigapixel histopathological WSIs can be excellently absorbed by data hungry deep learning
methods to tackle digital pathology problems.

Convolutional Neural Network (CNN) models have significantly improved the state-of-
the-art in many natural image based problems such as visual object detection and recog-
nition [7, 14] and scene labelling [5]. However, classification of WSIs through a CNN
raises serious challenges due to multi-gigapixel nature of images. Feeding the complete
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Figure 1: A whole slide image and multi-scale visualization of a sub region.

WSI or resizing WSI either leads to computationally unfeasible methods or loss of crucial
cell level features essential for segmentation. This results in processing WSIs which are typ-
ically 200K×100K pixels in size in a patch-by-patch manner. Since patch based approaches
face difficulties in handling images larger than a few thousand pixels, therefore using larger
patches to capture maximum context is not a solution. A huge difference between patch size
and WSI size results in loss of global context information which is extremely important for
many tumour classification tasks [2].

We propose Representation-Aggregation Networks (RANs) to efficiently model spatial
context in multi-gigapixel histology images. RANs employ a representation learning net-
work as a CNN which encodes the appearance and structure of a patch as a high dimen-
sional feature vector. This network can be any state-of-the-art network such as AlexNet [11],
GoogLeNet [16], VGGNet [14] or ResNet [9]. A 2D-grid of features is generated by packing
feature vectors for neighbouring patches in the WSI as encoded by the representation learn-
ing network. The first variant of context-aggregation network (RAN-CNN) in RAN utilizes
a CNN with only convolutional and dropout layers. RAN-CNN takes input as a 2D-grid and
outputs a tumour probability for each cell in the 2D-grid.

Recurrent Neural Networks (RNNs) along with their variants Long Short Term Memory
(LSTM) [10] and Gated Recurrent Units (GRUs) [4] have excelled at modelling sequences
in challenging tasks like machine translation and speech recognition. We build the second
variant of RAN (RAN-LSTM) by combining CNNs with 2D-LSTMs. RAN-LSTM cap-
tures the context information by treating WSIs as a two-dimensional sequence of patches.
RAN-LSTM extends 2D-LSTMs for tumour segmentation task in multi-gigapixel histology
images by using learned representations of neighbouring patches from represenation learning
network as a context for tumour classification of a single patch. RAN-LSTM is constituted
by four 2D-LSTMs running diagonally, one from each corner. Tumour predictions across
all the dimensions are averaged together to get the final tumour classification. The complete
workflow of the proposed architecture is shown in Figure 2.

We demonstrate the effectiveness of modelling context using RANs for tumour segmen-
tation. RANs significantly outperform traditional methods on the dataset from Camelyon’16
challenge [1] on all metrics. Our main contributions can be summarized as follows:
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Figure 2: (a) A large region from WSI which consists of NM patches. (b) A CNN (e.g.
AlexNet, GoogLeNet, etc) encodes each patch independently into high dimensional features.
(c) Rearranged features into 2D-grid format. (d) Overlay of prediction from RANs on the
input. Both light and dark patches represent different classes.

• We propose RANs as a generic architecture for context modelling in multi-gigapixel
images.

• We utilize both CNNs and 2D-LSTMs for context-aggregation network.

• We show the effectiveness of the addition of context-aggregation network on top of a
representation network for segmentation of tumour areas in multi-gigapixel histology
images.

2 Related Work
With large memory storage and fast computational power available in modern machines,
processing WSIs has become feasible. Recent studies have exploited WSIs for cell detection
and classification [15], nuclei segmentation [12] and tumour segmentation [13]. Both these
approaches follow a patch based approach to process a WSI which significantly limits the
available context information. Bejnordi et al. [2] proposed a similar approach for breast
tissue classification by using large input patches and stacking CNNs together. To deal with
large input patches, the network is trained in two steps. On the other hand, RANs generalize
the segmentation task through context-aggregation from encoded representations of a 2D-
grid of small patches. RANs can incorporate CNNs, 2D-LSTMs or a combination of both
for modelling spatial context in WSIs.

Multi-dimensional RNNs [8] have been employed to model sequences in both temporal
and spatial dimensions. Recent approaches [17] [3] model spatial sequences in an image
to accomplish dense output for semantic segmentation tasks. Byeon et al. [3] utilized four
2D-LSTMs running in each direction, whereas Visin et al. [17] employed two bi-directional
RNNs as two layers for up-down and left-right spatial modelling. The key difference between
these two and our approach is that we try to model spatial context by aggregating multiple
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patches as a 2D-grid of patches instead of modelling spatial context within a single patch.
Both [3] and [17] model spatial context for natural images, whereas RANs can model much
larger context in multi-gigapixel images.

3 Representation-Aggregation Networks
The proposed Representation-Aggregation Networks (RANs) have a two-network architec-
ture wherein the first network learns patch-level representation, which is passed on to the
second context-aggregation network. RAN is able to incorporate context from a large region
by aggregating the learned features from the first network as 2D-grid of patches. RANs ana-
lyze a 2D-grid of patch-level features at once, and predict tumour probabilities for each cell
in the grid by feeding representation of neighbouring cells as context.

The first network is essentially a representation learning network. It takes in input patches
of size n×m×3 and yields a D-dimensional representation. One can use any state-of-the-art
image classifier for this purpose. For our experiments, we train AlexNet [11] on our dataset
to classify patches as tumour or non-tumour. D-dimensional representations, denoted by
pt are obtained by extracting features from an intermediate layer of a trained network. We
experiment with various intermediate layers with later layers being more task specific. We
discuss the proposed variants for context-aggregation network in the following subsections.

3.1 RAN-CNN
Convolutional Neural Networks are good at learning the spatial relations from the input.
RAN-CNN is designed to capture spatial context from the neighbouring patches. It consists
of five 3×3 convolutional layers. The first convolutional layer takes in 2D-grid feature as an
input and subsequent layers operate on the output from the previous layer. One can control
the context region by varying the convolutional filter size. Last three convolutional layers
are followed by dropout layers to avoid overfitting.

yi = fconv(pt ,Wi)◦ fa(·) (1)
y j = fconv(pi,W j)◦ fa(·)◦ fd(·) (2)

y = fconv(p j,W)◦ fa(·) (3)

where fconv, fa and fd are the convolution, activation and dropout functions respectively;
Wi, Wj and W are the trainable weights; the operator (◦) provides the output of preceding
function to the superseding function and operator (·) represents the output of the preceding
function; yi and y j are the outputs of ith and jth layers, i ∈ {1,2, . . . ,C}, j ∈ {1,2, . . . ,D} and
C,D are the number of convolutional layers with and without dropout layers. y represents
the output of final prediction layer which maps the number of feature maps from yth

d layer to
the total number of classes.

3.2 RAN-LSTM
For modelling image sequences through standard 1D-LSTM, a sequence of D-dimensional
representation is used as an input to the LSTM. On the other hand, 2D-LSTMs take two-
dimensional inputs represented as a sequence of two D-dimensional vectors and generate
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Figure 3: Hidden states {hx
t−1, hy

t−1} and cell states {cx
t−1, cy

t−1} are used for prediction at
(i, j) by LSTM-1. Similarly, outputs from LSTM-1,2,3,4 denoted by blue, pink, yellow and
green are averaged for prediction at each cell (i, j) by using context from adjacent patches.

either sparse or dense output predictions as required by the task. RAN-LSTM extends 2D-
LSTM to model the context information along a 2D-grid of patches. Each 2D-LSTM unit
(i, j) has one input gate (it), two forget gates ( f x

t , f y
t ), two cell memory gates (c̃x

t , c̃
y
t ) and one

output gate (ot) for neighbouring patches in x and y direction respectively. The hidden states
and cell states for current unit are denoted by ht and ct respectively. hx

t−1 and hy
t−1 denote

hidden states for the neighbouring unit on left and top respectively. Similarly, cx
t−1 and cy

t−1
denote cell states for the neighbouring units. Unit (i, j) is pairwise connected to its 4 neigh-
bours i.e. [(i−1, j),(i, j−1)], [(i−1, j),(i, j+1)], [(i+1, j),(i, j−1)], [(i+1, j),(i, j+1)]
where each relation is exploited by an independent 2D-LSTM as shown in Figure 3. These
four 2D-LSTMs run in different directions, one from each corner to the diagonally opposite
corner. Final predictions are obtained by aggregating results from 2D-LSTM from all direc-
tions. The governing equations for 2D-LSTM are given below where pt , W∗, U∗, b∗ denote
input vector and weights matrices for hidden states, inputs and constants respectively. σ ,
tanh and� denote sigmoid activation, hyperbolic tangent activation function and dot product
respectively. 2D-LSTM can be treated as a layer which accepts input of size N×M×D and
outputs predictions of size N×M×D, where H indicates the hidden dimension of 2D-LSTM
layer. Multiple 2D-LSTM layers can be stacked one after another to form RAN-LSTM just
as convolutional layers for RAN-CNN.

it = σ(Wi{hx
t−1,h

y
t−1}+Ui pt +bi) (4)

{fx
t , f

y
t }= σ(W f {hx

t−1,h
y
t−1}+U f pt +b f ) (5)

{c̃x
t , c̃

y
t }= tanh(Wc{hx

t−1,h
y
t−1}+Uc pt +bc) (6)

ot = σ(Wo{hx
t−1,h

y
t−1}+Uo pt +bo) (7)

ct = it � c̃t + fx
t � cx

t−1 + fy
t � cy

t−1 (8)

ht = ot � ct (9)
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Figure 4: Precision-Recall and F1-score curves of different experiments of RAN-CNN along
with AlexNet and RAN-LSTM.

Both variants are trained to minimize cross-entropy loss L for 2D-grid as given below,
where y′i, j, P(yi, j) denote the ground truth label and the predicted tumour probability respec-
tively.

L =
1

NM

N

∑
i=1

M

∑
j=1

y′i, jlog P(yi, j) (10)

4 Results and Discussion

The Dataset. We evaluate our proposed method on the Camelyon’16 dataset [1] which
consists of 110 tumour and 160 normal WSIs. For all WSIs, we extract the tissue region using
a simple 2-layer Fully Convolution Network (FCN). We used 80% WSIs for training and
remaining for validation. Then, we randomly crop 188K patches of size 224×224 to form
the training set for patch-level network, out of which around 90K are tumour patches. For
training of context-aggregation networks, we extract a total of 190K 2D-grids by aggregating
64 (N = 8,M = 8) patches together. For validation, 20 complete WSI images are processed
yielding a total of 99K 2D-grids or 6 million patches. Because of the relatively large size of
training as well as validation dataset, we are fairly confident with the obtained scores and the
generalization ability of our method.

Model Specification. For representation learning, we train AlexNet on the training set
and experiment with FC6 and FC7 features as input to the context-aggregation networks.
We fixed the context depth as 8 and aggregated 64 (N = 8,M = 8) patches together as a
2D-grid to be processed by context-aggregation network, RAN-CNN or RAN-LSTM. We
experimented with different network architectures of RAN-CNN to find a suitable one. First,
we compared the impact of different number of convolutional layers and found that network
with more convolutional layers performed better. Finally, we kept 5 convolution layers along
with dropout for the last 3 convolutional layers, denoted by RAN-CNN-FC6-5L-D in Table
1. After comparing the performance of FC6 and FC7 features, we decided to stick to FC6
features because of its superior performance. We experimented with the number of 2D-
LSTM layers with 512 dimensional hidden state in each layers. Finally, we utilized two
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Table 1: Quantitative comparison of AlexNet, RAN-CNN and RAN-LSTM
Network Precision Recall F1-Score
AlexNet 0.28 0.67 0.40
RAN-CNN-FC6-3L 0.77 0.82 0.79
RAN-CNN-FC6-5L 0.82 0.81 0.81
RAN-CNN-FC7-5L 0.79 0.81 0.80
RAN-CNN-FC6-5L-D 0.81 0.83 0.82
RAN-LSTM-1L 0.74 0.82 0.78
RAN-LSTM-2L 0.85 0.81 0.83

2D-LSTM layers followed by a convolution layer to reduce the hidden state dimensions to
the number of classes, which is 2 in our case.

Training Details. RAN-CNN model was trained using Adam optimizer with a batch
size of 64. RAN-CNN converged after four epochs with total training time of 6 hours. For
training RAN-LSTM, we used Adam optimizer with learning rate and decay rate as 0.0001
and 0.5 after every 2 epochs respectively. The model is trained with a batch-size of 10 for a
total of 25 epochs which took a total of 45 hours to train. All the codes were implemented
in Tensorflow, and trained on a single NVIDIA GeForce GTX TitanX GPU. Out of 190K
training 2D-grids which is equivalent to 12 million patches, only 6% patches were tumorous.
To tackle this class imbalance problem, we sample all 2D-grids that had at least one tumour
patch along with the same number of non-tumour patches. This resulted in 28K training
2D-grids for training the context-aggregation network in RANs.

We evaluate several variants of RAN using precision, recall and F1-score. We select F1-
score as a metric for model performance instead of accuracy because of class imbalance in
our data. Figure 4 shows model performance through Precision-Recall curve and F1-scores
at various thresholds. RANs lead to significant increase in F1-scores from 0.40 for AlexNet
to 0.82, 0.83 for RAN-CNN and RAN-LSTM respectively. Since AlexNet classifies only a
single patch at a time, the resultant predictions consist of several discontinuous blobs over the
tumour region as shown in Figure 5. This demonstrates the importance of context informa-
tion while segmenting tumour region in multi-gigapixel histology images. The RAN-CNN
and RAN-LSTM improve the prediction by incorporating the spatial context, and output
smoother continuous regions. Thus, these are able to identify the global structure of the tu-
mour region as opposed to AlexNet which only captures the local information from a single
patch.

Both variants of RAN achieve competitive results as summarized in Table 1. From the
various different architectural variants of RAN-CNN using FC6 features with 5 convolution
layers with dropout performs the best. RAN-LSTM with a single layer (RAN-LSTM-1L) is
not able to perform well due to underfitting. A two layered RAN-LSTM (RAN-LSTM-2L)
gives much better performance than RAN-LSTM-1L. We refer to RAN-CNN-FC6-5L-D as
RAN-CNN and RAN-LSTM-2L as RAN-LSTM for convenience. RAN-CNN gives better
recall of 0.83 as compared to 0.81 with RAN-LSTM but loses on precision with 0.81 and
0.85 for RAN-CNN and RAN-LSTM respectively. RAN-LSTM outperforms all the ap-
proaches yielding the best F1-score of 0.83. The superior performance of RAN-LSTMs may
be attributed to its ability to capture global context of the complete 2D-grid at once, where
as RAN-CNN generates output predictions largely from local context. From Figure 5, we
see that RAN-LSTM succeeds in modelling the entire tumour region as a single component
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Ground Truth AlexNet RAN-CNN RAN-LSTM

Figure 5: Visual comparison of approaches along with ground truth where green color indi-
cates the boundaries of a continuous tumour region.

whereas RAN-CNN has few discontinuities within the tumour region.

5 Conclusions

Technical advances in digital scanning of tissue slides are posing unique challenges to the
researchers in the area of digital pathology. These gigapixel tissue sides open the way for
automated analysis of cancerous tissues by deep learning algorithms. We demonstrated how
segmentation demands sophisticated deep learning approaches when dealing with multi-
gigapixel histology images. We proposed Representation-Aggregation Network (RAN) as
a generic network that can incorporate the context from the neighbouring patches to make
global decisions on a task involving multi-gigapixel images. RANs can be easily modified
by varying representation learning network and context-aggregation network with networks
suited for a particular task. We evaluate the performance of RANs for the task of tumour
segmentation where it outperforms standard CNN approaches by a large margin.
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