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Abstract

Deep learning has shown increasingly promising performance in the pattern recogni-
tion field in recent years, becoming a prominent staple in image classification problems
since the introduction of the convolutional neural network. Such CNN models work well
in the image domain due to the spatially regular structure of the 2D and 3D grid, but not
all domain exhibit such a regular spatial structure. In order to retain the underlying spatial
information within the domain application, this study presents operators for graph-based
convolution and pooling, utilizing graph based signal processing methods to define com-
mon deep learning operators, such as convolution and pooling, on a graph representation
of the spatial human skeleton domain. The proposed method avoids unnecessary assump-
tions of spatial relationships between hand-crafted features, and evaluation shows strong
sequence classification rates that exceeds 93%.

1 Introduction
Deep learning has been a prominent feature in data mining and pattern recognition in recent
years, especially in problems such as classification and detection. Fully connected neural
networks have shown promising usage in feature space learning in domains including text
document analysis and genome characterization [45], with numerous architectures being
designed that are able to self-tune features to the problem under investigation [18, 36]. By
providing low level or raw input features, deep learning methods have been shown to learn
high level descriptive features for various structures within the data [34, 42]. Such methods
exhibit strong performances in various testing scenarios [18] and show promise for further
data mining problems [25].

Convolutional Neural Networks (CNNs) expanded upon the concept of neural networks,
learning localized features by convolving kernel filters with the input space to generate out-
put feature maps [19]. With localization of features came a great increase in the ability of
networks to learn descriptors in image mining problems [21, 22], and CNNs have shown
promising applications in a wide range of image based data learning problems; including
digit classification [7], face detection [20], and classification on a large number of classes
[28]. CNN architectures presented two key operators, convolution and pooling, to learn
spatially localised features.
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Figure 1: Graph based Convolutional Neural Network components. The GCNN is designed from an
architecture of graph convolution and pooling operator layers. Output prediction probabilities from
classification on frames t1:T are histogram binned and passed into a multiclass SVM for sequence
classification.

One limitation of the CNN convolution operator is the assumption of regular spatial
topology in the problem domain. This is readily defined in the image domain, with the 2D
and 3D grids providing a traversable spatial domain upon which to define locally receptive
fields [17, 39]. This assumption is not so apparent when considering problem domains that
do not reside on a regular spatial grid, and as such it is a non-trivial problem to define a
convolutional operator that is able to traverse localized regions of the input space. Current
methods of deep learning recognition on such an irregular input space include using stan-
dard neural networks [43], embedding features on the regular grid to allow standard CNN
convolution [15, 16], or identifying local manifold patches for geodesic convolutions [24].
These methods either ignore important spatial information of the domain, or forcefully define
arbitrary spatial relationships that may not be appropriate to the domain.

In this study, we utilize graph-based signal processing techniques to generate a GCNN
architecture on irregular domain problems; presenting GCNN convolution and pooling op-
erators for use in Human Action Recognition (HAR) learning systems. Recent study has
shown that graph-based signal processing techniques can learn on irregular domains present
in a wide range of applications [3, 10, 14]. The concept of employing the graph Laplacian to
undertake signal processing based kernel learning on geometrically irregular space was first
introduced in [3], while [14] goes on to explore use of smooth filters to identify localized
regions in the spatial domain. The presented GCNN operators are utilized to construct deep
learning architectures for problem domains beyond image processing and the regular CNNs.

We believe that this study shows the first usage of the GCNN architecture for the HAR
from 3D pose problem, implementing deep learning in the natural spatial domain of the 3D
pose. The proposed GCNN avoids hand-tuning features and the spatial embedding utilized
by current methods to adapt the 3D pose information into the regular CNN framework. By
using very low level features of motion the network is able to learn spatial relationships on
the irregular domain of the graph by the proposed convolution and pooling operations.

The rest of the paper is as follows. Section 2 describes GCNN architecture, provid-
ing convolution and pooling operators in the graph domain by use of graph based signal-
processing. A domain specific application is then presented in the context of human action
recognition in Section 3. Conclusions are then drawn in Section 4.
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2 Methods
The formulation of CNN convolution becomes problematic when considering a domain in
which there is no regular spatial structure, notably the application of operators translation
across the space and definition of a localized vertex neighborhood. One solution is to utilize
the analogy between multiplication in the graph spectral space and convolution in the spatial
domain. Localized feature maps can therefore be computed on an irregular domain graph by
graph signal processing techniques of graph Fourier transforms and spectral filtering [2, 33].
The graph forms a carrier for an observed graph signal and holds an underlying knowledge
about the spatial relationship between vertices [33]. By combining graph signal processing
operators and deep learning architecture design it is possible to learn on irregularly spaced
domains upon which conventional CNNs would be unable to convolve a regular kernel.

Below we describe the construction of GCNN operators that are used to develop a deep
learning GCNN network on the domain of HAR from 3D pose features. These methods are
then implemented and evaluated for sequence-wise HAR classification in Section 3. See
Figure 1 for an overview of the general proposed GCNN architecture components.

2.1 Graph Representation of the Irregular Domain
A graph G = {V,W} contains N vertices V and a weight matrix W of the non-negative,
undirected, non-self-looping edges between two connected vertices vn and vm. G is an edge
weighted graph, with no weightings associated to its vertices. Edge weighting and connec-
tivity can therefore be described by its unnormalized graph Laplacian matrix L, defined as
L = D−W , where D is a diagonal matrix dn,n = ∑

N
n=1 an containing the sum of all adjacen-

cies an,1:N for a vertex n from the binary node adjacency matrix A. It is possible to use a
normalized L, but for this study we take the unnormalized form of L, as similar performance
is observed when utilizing graph signal processing operators [33]. Generating a graph can be
non-trivial and is domain specific, with study into how to generate edge weightings between
vertices still a hot topic of discussion [12, 33, 44].

2.2 Graph Signals
Given G with N nodes, an observed data sample is a signal f ∈RN residing on G, where fn is
the signal amplitude at vertex vn. For an I-channeled observation f becomes a N× I matrix,
where each fi ∈ RN is a vector of features associated to vertices for the ith channel. These
input channels can then be subjected to localized feature learning via the graph convolutions
and deep learning architectures of the proposed GCNN. By having the graph represent the
underlying relationships between the vertices we are able to define a fixed spatial relationship
of inputs, irrespective of the value they hold.

2.3 Convolution on Graph
Due to the irregular topology exhibited by the domain of interest we cannot directly use
the regular convolutional operator defined in standard CNNs. Instead we learn localized
features via the convolution theorem and the spectral graph form of f [2]. To project f
into the frequency domain, the Laplacian L is decomposed into a full matrix of orthonormal
eigenvectors U = {ui=1...N}, where each eigenvector is a column ui in U , and its vector of
associated eigenvalues λi=1...N . Such eigen decomposition describes the frequencies present
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on the graph structure based on the neighborhoods defined by the Laplacian matrix, allow-
ing a given graph signal f to be represented in the spectral frequency domain by a Fourier
transform on the graph eigenvectors. To obtain the RN spectral form of fi, we define the
Graph Fourier Transform as a matrix multiplication between the eigenvector matrix U and
the signal f̃i = UT fi, with the inverse given as fi = U f̃i, where UT is the transpose of the
eigenvector matrix.

Using the convolution theorem, a convolutional operator in the vertex domain can be
composed as elementwise multiplication in the Fourier domain of the Laplacian operator L
[2]. Given f̃ ∈ RN and a spectral multiplier filter k ∈ RN , the spatial domain feature map y
is given by y =U( f̃ � k). For multiple input channels and multiple output feature maps we
can summate over the convolutions of individual input channels for each output map:

ys,o =U(
I

∑
i=1

UT ( fs,i)� ki,o) (1)

where I is the number of input channels associated with f , s a given observation sample,
and o indexes an output feature map from O desired output maps. The � describes the
elementwise multiplication of RN spectral signal f̂s,i and RN spectral multiplier k̂i,o.

2.4 Pooling on Graph with Kron’s Reduction
Regular CNN architecture often pools input feature channels by striding a receptive cell
across the spatial domain, evaluating an appropriate max or mean operator to produce a re-
duced resolution map. The pooling operator eases the scaling ability of architectures and
generalizes feature maps by resolution compression [1]. This pooling operator maintains the
spatial regularity of the domain, returning a Euclidean grid feature map. During graph based
convolutions there is no reduction in feature map size, due to the elementwise multiplication
of the spectral filter with the spectral input signal. As such, each layer of a GCNN would
possess a graph with RN vertices and the increasing output maps would quickly succumb to
scaling inefficiencies. We can however formulate a similar pooling operator for our GCNN
architecture, reducing the number of vertices in the graph and handling the graph signal
appropriately. Pooled graphs will also benefit from reduced complexity in convolution oper-
ations, due to the reduced size of the eigenvector matrix for Ĝ. As observations in a batch are
treated as graph signals on a single graph, GCNN architectures store a single copy of G and
U for each graph resolution, casting the observations onto the correct graph for that layer.
This allows for the pre-computation of the different graphs required for the entire architec-
ture, given that the number of pooling layers are known in advance. Pooling G = {V,W} to
Ĝ = {V̂ ,Ŵ} is by no means trivial; with extensive literature exploring possible methods of
removing, merging, or clustering vertices. [23, 30, 31]. Common methods for selecting V̂
are to either select a subset of V , [32], or generate new nodes V̂ from aggregation of related
nodes in the spatial or spectral domains, [30].

For this domain problem we utilize Kron’s reduction [9]. Kron’s reduction provides a
means to reconstruct the reduced node weight matrix Ŵ , via the removal of discarded vertices
from the rows and columns of the original graph Laplacian L. Selected vertices are used to
construct the coarsened Ĝ. Kron’s reduction has the effect of increasing the number of edge
connections present in the graph, and as such it is often necessary to sparsify the connectivity
in the graph by way of spectral sparsification [32, 35]. New edge weights are accumulated
into the new subgraph’s weight matrix for the coarser graph layer based on a prior probability
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distribution. With a coarser graph structure, Ĝ, it is necessary to downsample the graph
signal f1:N into a new signal f̂1:N̂ that is able to reside on Ĝ. Kron’s pyramid utilizes a linear
application of Green’s functions, derived from the Laplacian, to interpolate the signal about
a given vertex vn in the spatial domain [32]. This allows us to project our samples from fine
to coarse resolutions during forward passes through the network, and from coarse to fine
scale during the backpropagation of errors.

3 Domain Application: Recogntion of Human Action
from 3D Pose

This study focuses on the use of GCNN within Human Action Recognition of 3D skele-
tal pose, with classification on the Berkeley Multimodal Human Action Database (MHAD)
dataset [27]. By converting the human skeletal model to a graph based representation, we
are able to utilize our GCNN method without arbitrarily defining a set of hand-crafted high
level features, or projecting the data into a regular space just to suit standard CNNs.

3.1 Implementation
MHAD contains 11 action classes, performed by 12 subjects, and captured via an array of
modalities. We utilize the 3D motion capture information, omitting appearance information
in this instance. We normalize the data on a sequence-by-sequence basis in both orientation
to camera and scale, as per the normalizing algorithm presented by [4]. Due to the high
frame capture rate, we sub-sample the sequences down from 480Hz to 30Hz, bringing it in
line with commercial pose capturing sensors such as the Microsoft Kinect and Kinect V2.
The problem of human pose has a well-defined structure of connectivity to formulate into
a graph. Tracked 3D points in Motion Capture (MoCap) data constitute the graph vertices
on the graph of the human body, and the adjacency between these points (bones) can be
defined by the human skeleton in binary adjacency matrix A. From this prior knowledge of
the domain we can define connected vertices for the human skeleton as in Figure 2. Given
all training observations and the joint adjacency matrix A, we can generate weight matrix W
for the edge between adjacent vertices n and m across all observations, weighting the bone
edges by the inverse of the mean Euclidean distance between the end joints of a given bone.
By adding the adjacency matrix into the weight matrix, we are able to define weighted edges
for data points that occupy the same physical space. Such phenomena can be common in 3D
pose data for smaller digits such as fingers and toes where confidence of tracking is low. The
final form of W provides zeros for non-edge connection, ones for an edge which occupies the
same XYZ locations on its two end points, and a value larger than one for all edges with a
distance based weight. Due to their prominent use in pose based action recognition, we wish
to learn on low level joint motion features from each frame of the observation, [8, 11, 41].
We extract the XYZ coordinates, along with multi-scale motion features of velocity and
acceleration for all tracked markers, returning an V × I×X matrix of X frames with I = 123
channel graph signals residing on V = 35 vertices. We extract the features for each of the 3
spatial dimensions X, Y, and Z attributed to vX,Y,Z

n , calculating the velocity as vel(vX
n ) =

∆vX
n

∆t .
Velocity is calculated in relation to directional vectors of upper back to left shoulder, upper
back to right shoulder, horizontal shoulder to shoulder, and vertical upper back to lower
back. Acceleration is then given as acc(vX

n ) =
∆vel(vX

n )
∆t , where t defines the time step and vX

n
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Figure 2: Human skeletal graph for the MHAD MoCap data. a) Connective adjacency of the MoCap
markers and Kron’s reduction coarsened human graph. b) Graph signal pooling: from top to bottom:
original signal, pooled signal, upsampled signal. Detailed in Section 2.4.
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3.2 Evaluation
Evaluation on the MHAD dataset has been carried out in several ways by previous studies.
The initial paper reports a 7vs5 approach, training on the observations of subjects 1 to 7,
and testing on subjects 8 to 12 [27]. The overall HAR GCNN sequence classifier is as
follows. First a GCNN is trained to predict probability of a frame belonging to one of the
possible classes. A histogram is taken of the returned frame-wise class probabilities for
each sequence. This compresses the temporal dimension of the observations into a fixed
length feature vector. This vector is then used to train a multi-class SVM to classify whole
sequences into an action class. For testing sequences, each frame is fed forward through
the GCNN and their classes probabilities are then compressed via histogram binning to fit
into the pre-trained SVM. The SVM returns a prediction on the class label for the entire
sequence.

The architecture of the graph CNN is defined as C20−P−C50−R−F ; where Cκ de-
fines a graph convolutional layer with 5 knots and κ output feature maps, P defines a graph
coarsening, R defines a rectified linear unit layer, and finally F describes fully connected
layers providing output class predictions. Graph pooling was achieved via Kron’s reduction
and spectral sparsification. The two human skeleton graphs used in the architecture, and
signal pooling can be seen in Figure 2. After GCNN training, we performed a forward pass
with the training data and a histogram was taken of the output predictions from the fully
connected neural network layer, returning a fixed length feature vector for each sequence.
These sequences were then used to train a multi-class SVM classifier. The test set was then
fed forward through the GCNN in the same manner, and histogram representation of the
testing sequence probabilities were then classified using the pre-trained SVM. We report on
the final sequence-wise classification accuracy for the original 7vs5.

3.3 Results
The proposed Graph-CNN methods achieves a 93.82% accuracy in the 7vs5 validation sce-
nario, improving over the baselines reported by [27], and also over newer methods presented
by [6]. [27] obtains accuracy of 74.82%, 75.55%, and 79.93% for a 1 Nearest Neighbour, 3
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Nearest Neighbour and K-SVM approach respectively. [6] obtains 87.83% and 89.85% util-
ising understanding actions and execution styles via bi-linear modelling. A 100% accuracy
reported by [5] is an obvious issue; despite this, our proposed GCNN provides a benefit over
[6] and [5] in that we utilize very low level features, in comparison to the large number of
hand-crafted temporal features used in the current state of the art methods.

In all of the closest state of the art results the use of hand-crafted features is evident.
Although these features can provide strong performances on a given dataset, it is often dif-
ficult to apply them on a new HAR scenario due to their selection of informative joints and
feature extractors. Using heavily hand-crafted features are at odds with the self-learning
feature extractors of common deep learning methods such as CNNs, autoencoders, and the
proposed GCNN. GCNNs are able to optimizing towards informative features, obtaining an
understanding of the initial observations based on very low level or even raw data input. We
are able to train GCNN with very low level motion and spatial information regarding each
of the joints on the human skeleton, and from here the algorithm is able to learn generalized
features for frame-wise classification.

Overall the proposed GCNN has shown strong performance in the domain of 3D pose
based HAR. The graph convolution operator presented is able to generate feature maps on
the spatially irregular graph of the human skeleton, acting as a learnable feature extractor
when trained within a deep learning framework. The graph coarsening operator allows us to
reduce the graph resolution in order to generalize feature maps and reduce complexity. We
have shown favorable classification accuracies on a public HAR dataset, especially given
that the rival methods all utilize sets of user tuned features.

4 Conclusion
This study has proposed a method for the end-to-end mining of localized features in domains
with irregular geometry. The combination of graph signal processing techniques and deep
learning architecture design has allowed for features to be learnt on low level data in an
end-to-end fashion. The local features are learnt by the use of spectral domain convolution
of graph signals and spectral multipliers, in architecture similar to that seen in regular us-
age within standard CNNs. Convolutions are performed in the spectral domain of the graph
Laplacian and allow for the learning of spatially localized features via the gradient calcula-
tions provided. Results are provided on the domain of HAR, although the scope for further
application is much wider. Evaluation on HAR in a range of cross validation scenarios shows
the ability of GCNN to learn localized feature maps for frame-wise classification.
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